Breaking Ground with Dynamic Accumulators

New research helps to support the popular permaculture practice.


A canopy of cherry trees, subcanopy of raspberries, and groundcover of dandelion and chives in Unadilla Community Farm’s food forest.

A canopy of cherry trees, subcanopy of raspberries, and groundcover of dandelion and chives in Unadilla Community Farm’s food forest.
Courtesy of Unadilla Community Farm

Since the term was first introduced in the 1980s, the use of dynamic accumulators on the permaculture homestead has become a common practice. Across all climates and regions of the world, permaculture practitioners have been sharing their successes using a wide range of plants to accumulate specific nutrients in their foliage, which can then be harvested and used as mulch, compost, or home-brew liquid fertilizers. There are many lists to be found, in books and online, compiling the most popular dynamic accumulator plants and the nutrients they are thought to accumulate.

But there is one catch: practically everything we think we know about dynamic accumulators has so far been based on anecdotal evidence. As John Kitsteiner pointed out in his article “The facts about dynamic accumulators,” to date there has been virtually zero empirical research on the subject. This has led some people to the conclusion that dynamic accumulators are a myth. But those of us who see the glass as half-full would say that a wealth of anecdotal evidence supporting dynamic accumulators suggests there is something going on here, something that surely warrants investigation.

Defining Dynamic Accumulators

In response to this need, Northeast SARE (Sustainable Agriculture Research and Education, Northeast United States) provided a research grant to Unadilla Community Farm, in coordination with Cornell University, to help expand our collective understanding of what exactly dynamic accumulators are, how they work, and what are some practical applications for these plants. This article represents the first step in this research: defining what dynamic accumulators are.

Progress was recently made towards forming a definition in Dean Brown’s article “Qualifying dynamic accumulators: a sub-group of the hyperaccumulators,” where he points out the similarities between these two groups of plants. While dynamic accumulators are used to gather beneficial nutrients from the soil, hyperaccumulators are used to gather toxic heavy metals. When used for soil remediation, the plant tissue of hyperaccumulators is harvested and removed from the site. To qualify as a hyperaccumulator, a plant must accumulate metals above established threshold concentrations: 100ppm (for Cd), 1,000ppm (for Co, Cu, Ni, As, and Se), and 10,000ppm (for Zn and Mn). Brown suggests that similar thresholds should be set for dynamic accumulators, in ppm, using dried plant tissue samples, consistent with hyperaccumulator thresholds.

Helpful advice was also given recently by Robert Kourik, who was actually one of the first to popularize the concept of dynamic accumulators with his 1986 book, “Designing and maintaining your edible landscape – naturally.” In 2014, he revisited the subject with the article “Unstacking functions: dynamic accumulators,” suggesting that for a plant to qualify as a dynamic accumulator, we need “evidence of actual amounts (in ppm) of mineral/nutrient accumulation, as compared to other plants.” He then demonstrates how the USDA-hosted “Dr. Duke’s Phytochemical and Ethnobotanical Databases” can be used to compare nutrient values between thousands of plant species. Using these databases, we can establish average nutrient values across all plants and then set thresholds to identify the plants that possess comparatively high levels of specific nutrients in their foliage – the dynamic accumulators.

Building The List

Thanks to Brown and Kourik, we have been provided with clear instructions:

  1. Analyze the USDA databases to determine nutrient value averages across all plant species we have data for. Following Brown’s advice, the “high ppm” values are used as these correspond with dried plant tissue samples, consistent with hyper-accumulator thresholds.
  2. Set nutrient value thresholds for dynamic accumulators. Kourik suggested that dynamic accumulators should demonstrate high amounts of nutrient accumulation, as compared to other plants. To address this, we started by setting the thresholds at 200% of nutrient value averages, which results in about 10.40% of plants qualifying in each nutrient category. However, for this model to endure, the thresholds need to be fixed at specific values rather than remain relative to the averages, because those averages will change over time as new plants are added to the databases. So we rounded off the thresholds and set them at even numbers, still roughly 200% of the averages, representing the top 10.08% of plants.

And now for the exciting part: using these thresholds, which plants qualify as dynamic accumulators? We reviewed countless books and online articles to compile a list of all the plants reportedly used as dynamic accumulators, thanks to decades of informal research carried out by the permaculture community worldwide. And there is quite a bit of overlap between this list, and the list of plants from the USDA databases that meet the thresholds.

Next Steps

The analysis carried out in this article is just the beginning. There are still so many unanswered questions surrounding dynamic accumulators! Do they really “mine” for nutrients deep underground, or are they simply robbing other plants of nutrients in the topsoil? Exactly how much “chopping and dropping” do I need for a measurable nutrient increase in my soil? And what exactly are the nutrient values for home-brew liquid fertilizers made from these plants?

These are some of the questions Unadilla Community Farm is now researching, as we closely study six plant species: comfrey, dandelion, lambsquarters, red clover, redroot amaranth, and stinging nettle. These species have been selected because they appear on both of the above lists: they are frequently mentioned as dynamic accumulators by the permaculture community, and they also meet the thresholds established using the USDA databases*. They also have a variety of root depths, growth habits, life cycles, and potential applications. And being cold-hardy perennials or self-seeding annuals (and often labeled “weeds” for their ability to flourish in adverse conditions), these six plants could easily be grown for use as dynamic accumulators across the Northeast United States, where this study takes place.

*There is one plant that we’re studying that doesn’t show up in the USDA databases: comfrey. There simply isn’t any data available on leaf sample nutrient values for this plant. But given its wild popularity as a dynamic accumulator with the permaculture community, combined with the fact that it is one of the highest-yielding crops in the world in tons per acre, we decided that comfrey deserves further study.

Opportunities For Further Research

Dynamic accumulators are a cutting-edge concept, and there is a lot of room for research in this area. For starters, the nutrient values available through the USDA databases are by no means an exhaustive list. There are plants that only have partial nutrient profiles available in the databases, some that only have nutrient profiles for the roots but not the leaves, and many that simply are not listed at all – including plants that have reportedly been used as dynamic accumulators. Filling in the gaps in the USDA databases by conducting full-spectrum plant tissue analyses on missing plant species is vital work – not only for the study of dynamic accumulators, but for better understanding the huge diversity of plant life on this planet, and all of its potential applications. If you’re interested in helping with this, be sure to contact USDA first and ensure your study meets their standards for inclusion in the databases.

There is also a lack of research into how the nutrients present in plant tissue translate into bio-available forms through mulching, composting, liquid fertilizer production, compost teas, fermentation, etc. By relying on the USDA databases alone, we’re only seeing a portion of the bigger picture concerning nutrient cycling and soil health. We need more empirical research to develop best practices for harnessing the nutrients being accumulated by these plants.

Unadilla Community Farm is attempting to answer some of these questions through the study of six potential dynamic accumulators for temperate climates. We’re filling in the gaps in the USDA databases through plant tissue analysis, tracking the impacts of dynamic accumulators on soil nutrient levels at different depths, and measuring the nutrient content of mulches and liquid fertilizers made from these plants. Stay tuned for the results!

This material is based upon work supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, through the Northeast Sustainable Agriculture Research and Education program under subaward number FNE20-967.

Additional Resources:

Brown, D. (2015, May 12). Qualifying dynamic accumulators: A sub-group of the hyperaccumulators. Permaculture Research Institute. Retrieved from

Kitsteiner, J. (2015, April 10). The facts about dynamic accumulators. Permaculture Research Institute. Retrieved from

Kourik, R. (1986). Designing and maintaining your edible landscape naturally. Santa Rosa, CA: Metamorphic Press. See

Kourik, R. (2014). Unstacking functions: Dynamic accumulators [Word doc file]. Retrieved from

United States Department of Agriculture, Agricultural Research Service. (2016). Dr. Duke’s phytochemical and ethnobotanical databases [Data file]. Retrieved from

This article was originally published in Permaculture News.


Avatar of Greta Zarro

Greta Zarro

Ben Tyler and Greta Zarro are co-founders of Unadilla Community Farm, an off-grid organic farm and temperate food forest, in the mountainous interior of New York State.